ESC-TR-2003-079

Proj'ed Report

Polymorphous Computing Arch1tecture (PCA) :
Kernel-Level Benchmarks_ .

S Lebak
i 'A.,Reuiher'
~E.Wong

23J aﬁuary 2004

Lincoln Laboratory
MASSACHUSETTS'INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Defense Advanced Research Projects Agency . . e |
under Air Force Contract F19628-00-C-0002.

. Approved for public release; distribution is unlimited. | R _ }

20040203 020

~

This report is based on studies perfoi-med‘ at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. This work was -
sponsored by DARPA/ITO under Air Force Contract F19628-00-C-0002."

This report may be reproduced to sansfy needs of U.S. Government agencies.

.

The ESC Public Affairs Office has reviewed this report, and

itisreleasableto the National Technical Information Service,

where it will be available to the general public, including
' forelgn nanonal.s

“This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER

Plans a.nd Programs Directorate
Contracted Support Management

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed. '

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

ing the time for

g this burden

Public reporting burden for this wilectmn of information ls estimated to average 1 hour per resp
d Send

pleting and ing the 1 of

ters Servlces D for Inf 1 Op
(0704 0188) Washington, DC 20503.

or any other aspect of lh|s Hection of
and Reports, 1215 Je"erson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 1o the O'fce of Management and Budget, Paperwork Reduction Project

exls(mg data sources, gathering and maintaining the data needed,

luding suggestions for reducing this burden, to Washington

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
23 January 2004

3. REPORT TYPE AND DATES COVERED

Project Report

4. TITLE AND SUBTITLE

Polymorphous Computing Architecture (PCA) Kernel-Level Benchmarks

6. AUTHOR(S)
J. Lebak, A. Reuther, E. Wong

5. FUNDING NUMBERS

C — F19628-00-C-0002

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lincoln Laboratory, MIT
244 Wood Street
Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

PR-PCA-KERNEL-1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA/ITO
3701 Fairfax Drive
Arlington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-2003-079

11.SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
This document describes a series of kernel benchmarks for the PCA program. Each kernel benchmark is an operation of
importance to DoD sensor applications making use of a PCA architecture.

The kernel-level benchmarks have been chosen to stress both computation and communication aspects of the architecture.
“Computation” aspects include floating-point and integer performance, as well as the memory hierarchy, while the “communi-
cation” aspects include the network, the memory hierarchy, and the I/O capabilities. The particular benchmarks chosen are
based on the frequency of their use in current and future applications. They are drawn from the areas of signal processing,
communication, and information and knowledge processing.

Source code for most of the kernel-level benchmarks is provided in the MATLAB programming language, with a C and C++
version to be released in the summer of 2003. The specification of the benchmarks in this document is meant to be high-level
and largely independent of the implementation. MATLAB code is not provided for the corner-turn or database kernels. The
corner-turn kernel is described in the C language, as it involves explicit memory operation. The database kernel is described
relative to a generic database interface.

14. SUBJECT TERMS

15. NUMBER OF PAGES
42

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Same as Report

19. SECURITY CLASSIFICATION

OF ABSTRACT
Same as Report

20. LIMITATION OF
ABSTRACT

Same as Report

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by AMS! Std. 239-18
298-102

Massachusetts Institue of Technology
Lincoln Laboratory

Polymorphous Computing Architecture (PCA)
Kernel-Level Benchmarks

J. Lebak
A. Reuther
E. Wong

Group 102

Project Report PCA-KERNEL-1

23 January 2004

Approved for public release; distribution is unlimited.

Lexington Massachusetts

TABLE OF CONTENTS

1. Introduction
2. Metrics

3. Signal Processing Benchmarks

3.1 Finite Impulse Response Filter Bank
3.2 Singular Value Decomposition
3.3 Constant False Alarm Rate Detection

4. Communication Benchmark

5. Information and Knowledge Processing Benchmarks

5.1 Pattern Matching
5.2 Database Operations
5.3 Graph Optimization via Genetic Algorithm

6. Further Kernel Benchmarks

APPENDIX A—Code Conventions
REFERENCES
APPENDIX B-Revisions

This document contains
blank pages that were
not filmed.

iii

13

17

17
17
21

27

29
31
33

LIST OF ILLUSTRATIONS

Figure

No.

1
2

Sliding window in CFAR detection.

C corner turn example.

VSIPL corner turn example.
Pseudo-code for database timing loop.

Structure of a simple genetic algorithm.

Page
10
14
15
22
22

LIST OF TABLES

Table
No.

1 Benchmark metrics.

2 FIR filter bank input parameters.

3 SVD input parameters.

4 Parameter sets for the CFAR Kernel Benchmark.
5 Corner turn parameters.

6 Pattern matching parameters.

7 Track record éntries.

8 Tracking parameters.

9 Parameter sets for the Genetic Algorithm Kernel Benchmark.

10 Kernel benchmark code names.

vii

Page

11
16
18
19
19
25

29

Acknowledgments

The authors acknowledge contributions from Bill Coate, Janice McMahon, Masahiro Arakawa,
Robert Bond, and others.

Image processing kernel benchmarks were suggested by Mark Richards of GTRI. The exception is
the image compression benchmark, which is based on work done by Baxter and Seibert [1].

The incomplete gamma function was suggested as a kernel by James Lyke of AFRL.

Helpful input on the metrics was provided by members of the Morphware Forum, including Steve
Crago, Dennis Cottel, Mark Richards, Randy Judd, and others.

1. Introduction

This document describes a series of kernel benchmarks for the PCA program. Each kernel bench-
mark is an operation of importance to DoD sensor applications making use of a PCA architecture.

The kernel-level benchmarks have been chosen to stress both computation and communication
aspects of the architecture. “Computation” aspects include floating-point and integer performance,
as well as the memory hierarchy, while the “communication” aspects include the network, the
memory hierarchy, and the I/O capabilities. The particular benchmarks chosen are based on the
frequency of their use in current and future applications. They are drawn from the areas of signal
processing, communication, and information and knowledge processing.

Source code for most of the kernel-level benchmarks is provided in the MATLAB program-
ming language, with a C and C++ version to be released in the summer of 2003. The specification
of the benchmarks in this document is meant to be high-level and largely independent of the imple-
mentation. MATLAB code is not provided for the corner-turn or database kernels. The corner-turn
kernel is described in the C language, as it involves explicit memory operation. The database
kernel is described relative to a generic database interface.

2. Metrics

For each benchmark, a set of problem sizes are defined. Throughout this section, we refer to
the kernel by the index k, and refer to particular data sets for a given kernel as d;, where i =
1,2,..., Ni, and Ny varies from kernel to kernel. We assume that the data for the problem begins
in a “staging area” accessible to the PCA computation units (“main memory” or “an I/O stream”)
and must be moved into local memory. For the initial realization of the benchmarks, the staging
area can be main memory. Final measurements in the next phase of the PCA program should have
an I/O stream as the staging area.

There are two major metrics of interest for each problem size. The first is the total time or
latency, L, (k, d;), to perform kernel & for a data set size d; using a single PCA prototype integrated
circuit (hereafter, a PCA chip). This measurement should include both computation time and the
time to move the data for the problem from the staging area (off the PCA chip) to a computation
or operation area (on the PCA chip).

The second major metric of interest is the sustained achievable throughput, T'(k, d;). For each
kernel k and problem size d;, a measure of the workload, W (k,d;), is defined in an operation-
dependent and system-independent way. (For floating-point computation operations, W is the
floating-point operation count, while for communication operations, W' is the number of bytes
transferred.) The sustained achievable throughput is

nW(k, di)
n(k’ dz) ’

where L, (k,d;) is the total time to solve n problems of the given type using the PCA chip. As
above, L, (k, d;) includes the time to move the data from the staging area to an operation area.

There are clear trade-offs between throughput and latency. If the entire PCA chip is being used
to solve kernel k for data set d;, then L, = nL; and T = W/L,. In some cases, however, an
operation will be able to take advantage of pipelining and perform multiple computations of the
same type at the same time, resulting in higher throughput. Obviously, the extent to which this can
be accomplished will depend on the input bandwidth of the PCA chip. To measure the throughput
for our purposes, it is sufficient to measure L,, for a value of n that is sufficiently large (at least
n > 10, and preferably n > 100).

For embedded systems we are interested in the efficiency of the operation, that is, the use of
resources relative to the potential of the device. In general the efficiency E(k, d;) is defined as

T(k,d;) = lim 1)

where U(k) is the kernel-dependent upper bound or peak performance of the chip. The definition
of U(k) is linked to the definition of the workload. When W is in floating-point operations, U (k)
is the theoretical peak floating-point computation rate (based on the clock rate and the number of
floating-point units). For a communication operation, where workload is defined in bytes, U(k) is
the theoretical peak bandwidth between the communicating units. For benchmarks other than the
signal processing and communication benchmarks, efficiency is difficult to calculate because peak
performance for the corresponding workloads cannot easily be defined. For example, the workload

for the database benchmark is in transactions, and there does not exist an easily calculable peak
performance for the number of transactions performed. In these situations, efficiency cannot be
calculated.

One of the key metrics for the PCA program is stability of the performance. Kuck [8, p.168ff]
defines stability as the ratio of the minimum achieved performance to the maximum achieved
performance over a set of data set sizes and programs. Stability is defined in two senses for the
kernel benchmarks, a per-kernel sense and an overall sense. The per-kernel stability is reflected by
a metric called data set stability, Sy, defined as the stability for a particular kernel over all data sets
for that kernel,
mindi T(k, dz)
Stability across all kernels poses a problem, as the workloads and thus the throughput calculations

are different for different kernels. However, a good indication of the overall stability can be gleaned
from the geometric mean of the kernel stabilities,

Sa(k) = 3

“4)

Finally, for embedded systems, an important metric is the achieved performance per unit power
consumed by the PCA chip,
T(k,d;)
P(k,d;)’

where P(k,d;) is the overall power consumed during the operation. This normalized quantity C
gives some indication of the “cost” of executing the benchmark on the given PCA chip. Obviously,
this metric ignores power consumed by other elements of the system, but allows comparison with
commercially available processors using the same metric. Performance metrics per unit size and
weight are omitted, as the processing unit is perceived to be less of a driver for either of these
quantities than for power consumed by the system.

Along with the specified measurements, developers are asked to provide their implementa-
tion of the algorithm and a description of chip resource usage. The specific implementation of
the benchmark used to achieve the measured latency and throughput is of great interest for several
reasons. One important reason is to compare the throughput and latency achievable by different ap-
proaches. For this comparison, the availability of multiple implementations of the same algorithm
on the same architecture using different approaches would be ideal.

Another important reason to examine the implementation has to do with the workload, W (k, d;),
which is defined for a particular implementation of the kernel. This standard workload and imple-
mentation allows comparison of different architectures. If an additional algorithm with a signifi-
cantly different workload is also implemented, the value of W must be adjusted or the workload
is invalid. Therefore, developers are asked to provide an estimate of the workload for implementa-
tions that are substantially different from those given in this report and its associated code.

In summary, developers are requested to measure the latency, throughput, and power consumed
for each kernel benchmark k and data set d;. The theoretical peak floating-point, operation, and

Clk,d;) = &)

communication rates should be reported for the chip.! All other metrics (efficiency, stability over
problem size, stability over all kernels, and performance per unit power) are derived from chip
parameters and the measured quantities. Other statistics such as variance may be appropriate also
and may be calculated from these results. The desired quantities are summarized in Table 1.

Table 1.
Benchmark metrics.
Parameter | Description Calculation
L;(k,d;) | Total latency for j problems measured
W(k,d;) | Workload : given
T(k,d;) | Throughput lim,, o %
U(k) Performance upper bound for operation type:
floating-point clock rate * floating-point units
communication bandwidth between
communicating units
integer clock rate * integer units
E(k,d;) | Efficiency Tl
Sa(k) Stability over data sets E—;i‘{’:—";%—%
S, Mean of data set stabilities \7/ [Ti_, Sa(k)
P(k,d;) | Power consumed measured
C(k,d;) | Performance-power efficiency %%%

1These rates should be specific to an agreed-upon technology as discussed at the Morphware forum meeting in July
2002.

3. Signal Processing Benchmarks

Three signal processing kernels are included in the benchmark set. Each presents a different set of
characteristics in terms of operation counts and memory references.

3.1 Finite Impulse Response Filter Bank

The finite impulse response (FIR) filter is one of the basic operations in signal processing. This
kernel implements a set of M FIR filters. Each FIR filter m, m € {0,1,..., M ~ 1}, has a set of
impulse response coefficients w,,[k], k'€ {0... K — 1}. If the length of the input vector is N, the
output of filter m, y,y,, is the convolution of w,, with the input z,,:

K-1
Ymli] = Y Tmli — klwn[k], fori =0,1,...N - 1.
k=0

The filter is often implemented using fast convolution with the fast Fourier transform (FFT).
The most efficient implementation depends on various factors including the size of the filter re-
sponse vector (for more details, see [9]). We define two data sets in Table 2, one for a short kernel
and one for a long kernel. In the provided code, each filter operates on one row of the input data
matrix. Time-domain and frequency-domain implementations are given.

Table 2.
FIR filter bank input parameters.
Parameter Values
Name Description Set1 | Set2
M Number of filters 64 20
N Length of input and output vectors | 4096 | 1024
K Number of filter coefficients 128 12
| W | Workload (Mflop) | 33] 1.97]

3.2 Singular Value Decomposition

The singular value decomposition (SVD) is of increasing importance in signal processing. It
is an advanced linear algebra operation that produces a basis for the row and column space of the
matrix and an indication of the rank of the matrix. In adaptive signal processing, the matrix rank
and the basis are useful for reducing the effects of interference.

Given an m X n complex matrix A, the singular value decomposition of A is
A=UzVH, (6)

where U is a unitary matrix of size m X m, X is an m X n matrix in which the upper n x n portion
is a diagonal matrix with all entries real and sorted in descending order, and V' is an n X n unitary

Table 3.
SVD input parameters.
Parameter Values
Name | Description Set1 | Set2 | Set3
m Matrix rows 500 180 | 150
n Matrix columns 100 60| 150
Full SVD Algorithm
Wa Fixed workload (Mfiop) 424 36 72
Wi Workload per iteration (Mflop) | 0.24 | 0.088 | 0.54
Reduced SVD Algorithm

Wi Fixed workload (Mflop) 101 15 72
W Workload per iteration (Mflop) | 0.24 | 0.88 | 0.54

matrix. If m > n, then define

I

U [Ua U],

L = [%“]

where U, is size m x n, U, is size m X (m — n), and X, is of size n X n. Then A = U,z VH
is called the reduced SVD of the matrix A. In this context the SVD defined in equation (6) is
sometimes referred to as the full SVD for contrast. Notice that U, is not unitary, but it does have
orthogonal columns. When m < n, the reduced SVD can be similarly defined by partitioning V'
instead of U.

For signal processing applications, we are typically most interested in the reduced decompo-
sition, in the matrix U, and in the singular values (the values on the diagonal of). However,
the kernel benchmark code produces all three matrices, and can produce either the full or reduced
decomposition on request. The data matrix sizes of interest are given in Table 3.

There are three major steps to the full SVD algorithm, which are described in more detail in
Golub and Van Loan [7]. First, if the m x n matrix A has many more rows than columns, a QR
factorization is performed. This step is done if m > 5n/3 [7, p. 252], which is typically the case
in signal processing.

The QR factorization of an m x n matrix A with m > n is a pair of matrices A = QR, where
the unitary matrix @ is of size m X m and the upper-triangular matrix R is of size m x n. The
usual way of calculating the QR factorization, as discussed in Golub and Van Loan, is by a series
of Householder transformations [7, Algorithm 5.2.1]. Define

Q@ = [Q @], %
R,
R = [0] ®

where Q, is size m X n, @y is size m X (m—n), and R, is size n xn. The decomposition A = Q. R,
is referred to as the reduced QR decomposition of A. Matrix @, is not unitary, but it has orthogonal

columns. The reduced QR factorization can be obtained by the modified Gram-Schmidt algorithm
described in Golub and Van Loan [7, Algorithm 5.2.5]. If a full SVD is being performed, the
full QR is computed: if a reduced SVD is being performed, a reduced QR is computed. In the
remainder of this exposition, we describe the full SVD algorithm. We assume that in the first step,
we perform a full QR decomposition to produce

A=UR,

where R is an m X n upper-triangular matrix and U is an m x m orthogonal matrix.

In the next step, R is reduced to bi-diagonal form, to consist of the main diagonal and a single
diagonal of entries above that, with the remainder of the entries in the matrix being zero [7, p. 253].
This is accomplished with Householder transforms, producing

R =U,BV},

where U; and V; are unitary and the m x n matrix B is bi-diagonal. The matrix B produced at this
step is real (no longer complex) though matrices U, and V; are complex.

The final step is an iterative reduction of B to diagonal form and the ordering of the singular
values. This is accomplished with Givens rotations [7, p. 454]. At the end of this step we have
produced matrices U; and V3 such that

B = UsZVy,
so that the singular value decomposition of the original matrix A can be expressed as

A = UDULUE(VaVa)?
UsvE,

with U = UUsUsz and V = V3V,

As the exact number of iterations required to produce the SVD is based on the data, an effi-
ciency measurement must take into account the actual number of iteration steps performed. We
account for this by defining the workload W as a linear function of two numbers W; and W, given
in Table 3,

W=W+nxW2,)

where n is the number of iteration steps performed in the reduction of B to diagonal form, W, is
an estimate of the number of floating-point operations per iteration step, and W, is an estimate of
the number of floating-point operations in the remainder of the algorithm. The estimates W and
W for complex matrices are given separately for the full and reduced SVD algorithms in Table 3.
The number n for a given data set must be “discovered” in the course of the execution of the
benchmark.

There are many implementation details associated with achieving high performance in the sin-
gular value decomposition. Examples of such details include the use of block Householder trans-
forms [7, p. 213] and the storage of the Householder transforms and Givens rotations that produce
U and V rather than the matrices themselves [3]. These methods are not demonstrated by the
kernel benchmark code.

3.3 Constant False Alarm Rate Detection

The constant false-alarm rate (CFAR) detection benchmark is an example of data-dependent
processing designedto find targets in an environment of varying background noise. The benchmark
subjects a subset of a radar data cube to this algorithm.

Assume a data culbe whose dimensions are beams, range, and dopplers. During CFAR detec-
tion, a local noise estimate is computed from the 2N, s, range gates near the cell C(i, J, k) under
test. A number of guard gates G immediately next to the cell under test will not be included in the
local noise estimate (this number does not affect the throughput). For each cell C(i, j, k), the value
of the noise estimate 7°(i, j, k) is calculated as

G+chnr
Y 1CG G+ LR +10G, 5~ LR (10)

ar |=G+1

C

The range cells involved in calculating the noise estimate for a particular vector are shown in
Figure 1. For each cell C(s, 5, k), the quantity |C(3, j, k)[?/T (4, j, k) is calculated: this represents
the normalized power in the cell under test. If this normalized power exceeds a threshold , the
cell is considered to contain a target.

Cell Under Test
C(iysk)

TG)

Figure 1. Sliding window in CFAR detection. The example shows the number of guard
cells G = 1 and the number of cells used in computing the estimate Nfqr = 3.

An efficient implementation of the CFAR algorithm makes use of the redundancy in the com-
putation of T' according to the formula given in (10). Note that the relationship between T'(z, 7, k)

10

and T'(z,7 + 1,k) is

T(,5+1,k) =T(@,5,k) + (IC(5,j + 1+ G + Nyfor, k)|?

1
2NC ar
IC(Za] - G, k)l2
— |C(i,5 — G — Negar, k)I?
— |CG,5+G+1,k).

Using this relationship, the value of T for a particular set of N,, range gates can be calculated
in O(N,,) time, that is, independent of the values of G and N,,. Note that some variations of
this formula and equation (10) occur at the boundary areas; refer to the MATLAB code on how to
handle these boundary conditions.

The parameter sets for the CFAR benchmark are shown in Table 4.

Table 4.
Parameter sets for the CFAR Kernel Benchmark.
Name | Description SetO | Set1 | Set2 [Set3 | Units
Nbm | Number of beams 16 43 48 16 | beams
Nrg Number of range gates 64 | 3500 | 1909 | 9900 | range gates
Ndop | Number of doppler bins 24 | 128 | 64 16 | doppler bins

Ntgts | Number of targets that willbe | 30 30 30 30 | targets
pseudo-randomly distributed

in Radar datacube
Ncfar | Number of CFAR range gates | S 10 10 20 | range gates
G CFAR guard cells 4 8 8 16 | range gates
mu Detection sensitivity factor 100 | 100 | 100 | 100
| W | Workload 1039 | 344 | 94 | 41 | Mflop |

11

4. Communication Benchmark

Many signal and image processing applications operate on multi-dimensional data in multiple
stages, with operations focusing on a different dimension in each subsequent stage. If the host
platform is a parallel processor, the data are usually distributed across the nodes to exploit data
parallelism, so that each node can operate in parallel on its portion of the data as the algorithm
transitions from one stage to the next. For efficiency reasons, it is desirable to perform a corner-
turn of the data. A corner turn operation is defined as a copy of the object with a change in the
storage order of the underlying data. This may or may not imply transposition of the computation
object, depending on the implementation. In this section, we describe this operation in more
detail and describe in general terms an abstracted, high-level application that requires a corner-
turn operation.

An application that requires a corner turn works first on the rows of an input matrix, and then
on the columns of the intermediate result matrix. Mathematically, one of the most basic examples
of such an operation is a multiplication of three matrices,

Z=DBEXA, (11)

where B and A are application-dependent matrices, X is the matrix of input data, and Z is the
matrix of output data. An example situation where this might occur would be a filtering operation
followed by a beamforming operation.! Suppose that we perform the operations of Equation (11)
into two stages, the first producing Y = X A and the second producing Z = BHY", Then the first
stage is an operation in which an entire row of X is desired, and the second is an operation in which
an entire column of Y is desired. Thus, the two stages suggest different optimal data layouts.

The idea behind the corner-turn operation is to preserve data locality in the dimension being
operated on. Whether or not a mathematical transpose is performed is implementation-dependent.
In multi-dimensional arrays in the C programming language, the last array index is continuous in
memory. In order to perform a corner turn of a C language array, a transpose is required; that is,
the order of some of the dimensions must be reversed (see Figure 2).

Now consider an implementation with the property that storage order is independent of the
order of the indexes. In such an implementation, it would be possible to do a corner turn without
requiring a transpose of the computation object. The vector, signal, and image processing library
(VSIPL, [10]) is an example of a library where this is possible: the stride parameters of a VSIPL
view allow the VSIPL copy operation to re-arrange the underlying data without changing the math-
ematical properties (see Figure 3).2 When using objects with this property, storage order may be
considered to be a mapping issue, whereas when using standard C and C++ arrays, storage order
is explicitly embedded in the application program.

The discussion above does not consider the distribution of data over processors. Distribution
effectively adds a level of memory hierarchy to the performance of a corner turn: data must be
copied to a new processor as well as re-arranged on the new processor. Frequently, an all-to-all

1A filtering operation can be represented as a matrix-matrix multiply, but would usually not be implemented in
such a fashion. Thus, the use of matrix multiplication here is an additional level of abstraction about the application.

21t would also be possible to implement standard C/C-++ data structures with this property: use of VSIPL here is
purely a matter of convenience.

13

The C code to perform a corner turn of two-dimensional array A into two-
dimensional array B is

// Notice dimensions of B are the reverse of those of A
int A[NX][NY], BINY][NX];

for (i = 0; i < NX; i++)
for (j = 0; j < NY; j++)
B[j1[i]l = A[il[j]:

If NX and NY were defined at compile time to be 4 and 3, respectively, and

~ =

2
5
8

o owo

—
o

1

—

then the memory area underlying A is
A={01234586782910 11 }.

Mathematically
036 9
B=|147 10 |=A4T,
2 58 11

and after execution of the above code the memory area underlying B is

B={03691471025811 }.

Figure 2. C corner turn example. In matrix B, the data are stored in corner-turned
fashion compared to matrix A, and B is the transpose of A.

14

The C code to perform a corner turn from VSIPL matrix view A into VSIPL matrix
view B is

// Notice dimensions of B are the same as those of A:
// storage order is different
vsip_mview_i *A = vsip_mcreate_i (NX,

NY,

VSIP_ROW,

VSIP_MEM NONE) ;
vsip_mview_i *B = vsip_mcreate_i (NX,

NY,

VSIP_COL,

VSIP_MEM_NONE) ;

vsip_mcopy_i_i(A, B);

If NX and NY were defined at compile time to be 4 and 3, respectively, and

01 2

3 4 5
A= 6 7 8 |’

9 10 11

then the block underlying A is
A={0123456717829 10 11 }.

After execution of the above code, B is mathematically the same as A, and the
block area underlying B is

B={03691471025811}.

Figure 3. VSIPL corner turn example. Matrix views A and B are mathematically the
same even though the underlying data in B are stored in corner-turn fashion compared to
matrix A.

15

communication operation, in which every processor communicates with every other processor, is
required as part of a distributed corner turn.

Parameters for two corner turn sizes are given in Table 5. These corner turn sizes are based
on current applications. For this particular kernel benchmark, the idea of timing throughput and
Jatency based on a single processor is acceptable, but it would be preferable to get a sense of the
throughput and latency possible for a multi-processor corner turn of the data. In the most frequent
occurrences of a distributed corner turn in signal processing, the source and destination processor
groups are either identical or are completely disjoint. The derived statistics of most interest for
multi-processor transfers are the stability of the throughput over the number of processors used,
and the efficiency of the transfer versus the theoretical peak bandwidth.

Table 5.
Corner turn parameters.
Parameter Values
Name Description Set1 | Set2
M Matrix rows 50 750
N Matrix columns | 5000 | 5000
[W [Workload (Mbyte) [2| 30 |
16

5. Information and Knowledge Processing Benchmarks

5.1 Pattern Matching

The pattern matching kernel entails overlaying two length-N vectors a and ¢ and computing
a metric that quantifies the degree to which these two vectors match. In general, the vector ¢ is
chosen from a set of reference vectors referred to as the remplate library. The metric used for
matching is the weighted MSE (mean square error) e,

N

Z (wk * (ax — te)?)

e= : (12)
>
k=1

where w, k = 1,2,..., N is the vector of weights. The optimal weights for the feature-aided
tracker have been computed empirically. In the kernel benchmark, we provide a generic weighting
vector.

The calculation done in equation (12) is performed on data that has been converted to decibels
(the “dB domain”). This is done because the raw power output from a signal processing system can
vary by many orders of magnitude. However, conversion of patterns between the power domain
and the dB domain is performed during the course of the benchmark: this requires the use of
a number of logarithm and exponentiation functions. The operation count for these functions is
implementation-dependent, and so the workload we give has three components: a count of the
number of calls to the exponent function, a count of the number of calls to the logarithm function,
and a count of the operations in the rest of the benchmark.

Before the two profiles can be overlaid, they may need to be shifted in range to the left or right,
and the magnitude of the profiles may need to be scaled to match. The optimal shift and gain values
can be found through brute force by computing the MSE for each combination of shift and gain
values, then taking the minimum MSE. However, by noting that the MSE is a parabolic function
of the shift and gain, we can find the optimum shift and gain values at the global minimum by first
finding the optimal shift, then finding the optimal gain value.

The parameters of interest for the pattern matching benchmark are the length of the pattern
vectors, the size of the template pattern library, and the number of shift and scale operations per-
formed. These parameters are given for two data set sizes in Table 6.

5.2 Database Operations

We consider the database operations in the context of a tracking application that stores track
records in a database. Each record consists minimally of coordinates, a time value known as a
cycle, and some associated target data. During each cycle, the tracker receives a set of target
reports from a radar. For each target report, the tracker will search the database for all track records
that could be associated with that target report, based on their location. Target reports that are not
associated with any current tracks will be inserted into the database and assigned the current time

17

Table 6.
Pattern matching parameters.

Parameter Values

Name Description Set 1 Set 2
N Pattern length 64 128
K Number of patterns 72 256
S, Number of shifts 22 43
Sm Number of magnitude scalings 13 13
Wy Workload: log, function calls 4.61 x 10% | 32.8 x 10°
Wa Workload: 10® function calls 4.61 x 10° | 32.8 x 10°
W3 Workload: Other floating-point ops (flops) | 1.05 x 10° | 12.3 x 10°

value. The oldest records (those that have not been associated with a target report after a specific
number of cycles) will be deleted.

Our goal is to measure the performance of the search, insert, and delete operations, without ever
altering the contents of any particular record. The major motivation for this is to avoid generating
the large amount of data necessary for the database. Thus, we do not actually generate and maintain
the contents of the database itself, only the indexing structures. Therefore, the structures we will
use will only store the values we need: z and y coordinates, a time value and a record identifier,
which is an integer index of or pointer to a data record.

For an application of this type, the three database operations that are needed are:

search Look up and retrieve all items whose characteristics fall into a given range. In this case,
a search is done for all targets within a specified range of a particular (z, y) coordinate pair,

where z and y are floating-point numbers. Given a set of sector bounds {Z rrin, Taraz, Yatin, Y Maz }s

this search can be expressed in a fashion approximating the structured query language (SQL)
as

select * from TrackDatabase
where (z > Tayrin AND Z < Tpra; AND y > yasin AND ¥ < Ynrroz)-

insert Add a new item to the database. This can be expressed in a SQL-like fashion as
insert into TrackDatabase values(id, z,,, Y., timey).

delete Remove an item from the database, expressed in a SQL-like fashion as
delete from TrackDatabase where (time > time,).

Database workloads are provided based on two scenarios, a kinematic tracking scenario similar
to the parameters proposed for the integrated radar-tracker benchmark, and a multi-hypothesis
tracking scenario in which the database is allowed to become much larger. For each scenatio, the
frequency of each operation (search, insert, delete) is specified. The parameters that define these
two scenarios are given in Table 8.

18

Table 7.

Track record entries.

Name Explanation Type
snr relative strength of target detection. float
x estimated x-coordinate of target at time {. float
Y estimated y-coordinate of target at time £. float
z Estimated velocity of target in the z direction at time ¢. float
] Estimated velocity of target in the y direction at time {. float
t Time stamp (an integer cycle number) for the last target re- | integer
port associated with this track.
status Enumeration: one of { New, Novice, Established }. Enumeration
class Classification vector from overall FAT computations. 60-element
float vector
aspect Estimated aspect angle of target at time ¢. float
hrr High Range Resolution (HRR) profile for last target report | 64-element
associated with this track. float vector
Pp Extrapolated process noise covariance matrix. 4 x 4 double
matrix
Hypothesis | Movement model hypothesized for last track/report associa- | Enumeration

tion for this track (valid models are linear constant velocity,
linear accelerating, arc of circle constant speed, unmodelled)

Table 8.
Tracking parameters.

Parameter Values

Description Set 1 Set 2
Cycles to run 100 100
Total records generated 500 { 102,400
Initial number of placed targets 450 | 92,160
Number of grid rows, M 5 32
Number of grid columns, N 5 32
Grid row search size, Ax 2 2
Grid column search size, Ay 2 2
Grid target density, d 20 100
Idle cycles before deletion, T 10 10
Search operations per cycle, ns 400 100
Matches found per search k 80 400
Insert operations per cycle, ni 20 300
Delete operations per cycle nd 20 300
Workload per cycle (transactions) | 440 700

19

5.2.1 TestData

The test data for the database can be thought of as a set of fixed-location “targets” that appear
and disappear periodically, distributed on a grid of size M x N km?2. We specify the require-
ment that, on average, there should be k matches returned for each search. This implies that in a
search area of size Az x Ay km?, there are an average of d = k/(AxAy) targets per square km.
Track records are assumed to be candidates for deletion every 7 cycles. Therefore, the initial data
generation process consists of generating an equal number of “targets” with a given time value
between [0, 7 — 1], i.e. 7 time cycles must elapse before any record with a certain timestamp can
be deleted. We then distribute the targets equally in a uniform pattern in each of M N 1-km? grid
portions, placing on average of d targets in each of the squares. The initial database consists of all
the initially placed targets, i.e. those that do not have a ¢ value of zero.

During each cycle, the generator must generate, based on what targets are placed on the grid,
search, insert and delete operations to be performed in that particular cycle. Each search command
specifies z and y coordinates chosen from a uniform random distribution: the result of the search is
all the targets located within a square of size Az x Ay centered on those coordinates. Each insert
command specifies a set of targets to add, randomly chosen from those targets not currently in the
database. Similarly, each delete command specifies a set of targets to remove, randomly chosen
from those targets in the database.

As mentioned, no updates are needed to the underlying data. Therefore, for a particular cycle
¢, we define ¢,, = ¢ mod 7 (7 being the number of cycles that must elapse before deletion). Any
inserted targets on cycle c are given time value c,,,, and the targets to delete are chosen from those
previously inserted targets with a time value (¢ + 1) mod 7.

To generate valid insert and delete commands, the generator will actually have to keep track
of which targets are on the field and which are not. This is accomplished by using data structures
similar to the ones used in the actual test. A red-black tree is used to keep track of what targets
are placed and which ones are not, and a linked list keeps track of the time values of the placed
targets. Using this information, commands can be generated that insert unplaced targets or delete
previously placed targets. The command generation occurs before any of the actual benchmarking
and therefore is not timed.

5.2.2 Implementation

Based on the described search requirements, we maintain two structures, one which allows
searching on the z and y values, and one that allows searching on the time stamp. Each of these
structures stores some form of a pointer to the full track records, which we will randomly fill with
data. In order to make the benchmark more representative of actual database operation, the data
will then be accessed and copied in memory via memcpy.

A red-black tree [2] is the chosen structure for allowing the z and y search. Since the fields z
and y are always searched together, the x values are indexed using a red-black tree with the y values
stored at each node for quick reference. The red-black tree is chosen because the search, traverse,
insert, and delete operations are all asymptotically O(log, n) time. To search for all targets that
have z values in a given range, the program first finds the smallest match not less than the minimum
range value, then finds the largest match not greater than the maximum range value. The program

20

then traverses the tree between these two values, comparing the y values at each node, to find those
that are in the specified range. The asymptotic performance of the search operation is then

W, = (2+ V) log, Na, (13)

where V is the number of leaves between the minimum and maximum values and Ny, is the size
of the database. The first factor of 2 in (13) is from the two searches and the factor of V' comes
from the traversal.

The chosen implementation for searching on the time stamp is a linked list. Each list is kept
sorted by the time stamp. New tracks are added at the end of the list, which takes O(1) time.
Removing random tracks unfortunately takes O(n) time; however, because we always remove the
oldest records from the front and keep the list in sorted order, we need only search the first % of the
list, where 7 is the number of cycles that must elapse before records are deleted.

For a workload value for each scenario, we do not use the asymptotic values above, but instead
count each transaction (search, insert, delete) as an operation to be performed. This workload
value, given in Table 8, can be used to compute throughput for the database kernel (in transactions
per second) and compare among different architectures. However, an efficiency for the database
kernel benchmark is not defined. Peak performance for the database kernel benchmark would be
calculated from the rate at which the PCA chip can perform each database operation, which in turn
is related to the memory hierarchy.

5.2.3 Pseudocode

Let UT and PT be the sets of unplaced and placed targets (respectively), nt be the total number
of cycles to run this benchmark, and ns, ni and nd be the number of select, insert and delete
operations to run each cycle (respectively). The timing sequence can be described in pseudocode
as shown in Figure 4.

5.3 Graph Optimization via Genetic Algorithm

Genetic algorithms [4, 6, 11] have become a viable solution to strategically perform a global
search by means of many local searches. The basis of the genetic algorithm methods is derived
from the mechanisms of evolution and natural genetics. The genetic algorithm that is being used
as one of these kernel benchmarks is a fairly simple version. Many modifications are possible that
can enhance the performance for a given application, and some small enhancements have been
made to enhance the performance of this benchmark.

A genetic algorithm works by building a population of chromosomes which is a set of possible
solutions to the optimization problem. Within a generation of a population, the chromosomes
are randomly altered in hopes of creating new chromosomes that have better evaluation scores.
The next generation population of chromosomes is randomly selected from the current generation
with selection probability based on the evaluation score of each chromosome. The simple genetic
algorithm follows the structure depicted in Figure 5. Each of these operations will be described in
the following subsections.

21

I « Generate ns select(z, y) instructions, where z,y ~ U(0, M)*.
I « Generate ni insert(t) instructions, where t € UT is chosen with equal likelihood.
I «— Generate nd delete(t) instructions, where ¢ € PT is chosen with equal likelihood.
{Start timer}
foralli € I do
if 7 ~ select(z, y) then
S « select(z, y)
for all s € S do
buf « memcpy ()
end for
else if 7 ~ insert(t) then
PT « insert(t)
UT — remove(t)
else if 7 ~ delete(t) then
PT — remove(t)
UT « insert(t)
end if
end for
{Return timer value}
1U(a, b) denotes a uniform distribution from a to b.

Figure 4. Pseudo-code for database timing loop.

Simple Genetic Algorithm ()
{
Initialization;
Evaluation;
while termination criterion has not been reached

{

Selection_and Reproduction;
Crossover;

Mutation;

Evaluation;

}

Figure 5. Structure of a simple genetic algorithm.

22

5.3.1 Initialization

Initialization involves setting the parameters for the algorithm, creating the scores for the sim-
ulation, and creating the first generation of chromosomes. In this benchmark, seven parameters are
set:

e the genes value (Genes) is the number of variable slots on a chromosome;
o the codes value (Codes) is the number of possible values for each gene;
o the population size (PopSize) is the number of chromosomes in each generation;

e crossover probability (CrossoverProb) is the probability that a pair of chromosomes will
be crossed;

e mutation probability (MutationProb)is the probability that a gene on a chromosome will
be mutated randomly;

e the maximum number of generations (MaxGenerations)is a termination criterion which
sets the maximum number of chromosome populations that will be generated before the top
scoring chromosome will be returned as the search answer; and

o the generations with no change in highest-scoring (elite) chromosome (GensNoChange) is
the second termination criterion which is the number of generations that may pass with no
change in the elite chromosome before that elite chromosome will be returned as the search
answer.

The scores matrix for the simulation, which is generated in the GenAlgGen script, is the set
of scores for which the best solution is to be found. The attempted optimization is to find the code
for each gene in the solution chromosome that maximizes the average score for the chromosome.
Finally, the first generation of chromosomes are generated randomly.

5.3.2 Evaluation

Each of the chromosomes in a generation must be evaluated for the selection process. This is
accomplished by looking up the score of each gene in the chromosome, adding the scores up, and
averaging the score for the chromosome. As part of the evaluation process, the elite chromosome
of the generation is determined.

5.3.3 Selection and Reproduction

Chromosomes for the next generation are selected using the roulette wheel selection scheme [11]
to implement proportionate random selection. Each chromosome has a probability of being cho-
sen equal to its score divided by the sum of the scores of all of the generation’s chromosomes.
In order to avoid losing ground in finding the highest-scoring chromosome, elitism [11] has been
implemented in this benchmark. Elitism reserves two slots in the next generation for the highest
scoring chromosome of the current generation, without allowing that chromosome to be crossed
over in the next generation. In one of those slots, the elite chromosome will also not be subject to
mutation in the next generation.

23

5.3.4 Crossover

In the crossover phase, all of the chromosomes (except for the elite chromosome) are paired up,
and with a probability CrossoverProb, they are crossed over. The crossover is accomplished
by randomly choosing a site along the length of the chromosome, and exchanging the genes of the
two chromosomes for each gene past this crossover site.

5.3.5 Mutation

After the crossover, for each of the genes of the chromosomes (except for the elite chromo-
some), the gene will be mutated to any one of the codes with a probability of MutationProb.
With the crossover and mutations completed, the chromosomes are once again evaluated for an-
other round of selection and reproduction.

5.3.6 Termination

The loop of chromosome generations is terminated when certain conditions are met. When the
termination criteria are met, the elite chromosome is returned as the best solution found so far. For
this benchmark, there are two criteria: if the number of generation has reached a maximum number,
MaxGenerations, or if the elite solution has not changed for a certain number of generations,

GensNoChange.

5.3.7 Implementation Notes

Genetic algorithms are being used around the world for an enormous variety of applications.
However, this benchmark of genetic algorithms has been designed with two specific purposes in
mind: matching computational tasks with processing units in a general independent task envi-
ronment and in signal processing pipeline tasks. For the general independent task environment,
the genes of the chromosomes are the computational tasks which have arrived in the order of their
gene’s number, and the codes are the possible processing units upon which the computational tasks
can be executed. Similarly, for the signal processing pipeline tasks, the genes of the chromosomes
are the pipelined tasks that constitute a signal processing chain, and the codes are the computa-
tional unit mappings upon which the pipeline stage tasks can be run. The scores for each code in
a given gene position represents a goodness factor (for computational efficiency, execution time,
or some other measure) ranging from zero to one (one being best). The goal then is to find the
mapping of tasks onto processors that yields the best score, in this case a perfect score of one.

Random numbers for the benchmark C code are generated using the random number generator
from VSIPL [10, p.245]. This random number generator is used so that the code is portable and
the workload is easily calculable (based on the discussion in the standard, we assume 11 ops per
random number generated). Use of this random number generator is not required. However, if
a different random number generator is used, the workload given in Table 9 should be altered
accordingly.

For this kernel benchmark, four parameter sets have been included. These sets are shown in
Table 9. Sets 1 and 2 are sample parameters for the general independent task scenario while sets
3 and 4 are sample parameters for the digital signal processing pipeline task scenario. For this

24

Table 9.

Parameter sets for the Genetic Algorithm Kernel Benchmark.

Name Description Setl | Set2 | Set3 | Set4 [Units

Codes Number of code types for a 4 8 100 1000 | codes
gene

Genes Number of genes on a chro- 8 96 5 10 genes

" mosome

PopSize Number of chromosomesina | 50 200 100 400 | chromosomes
generation

CrossoverProb | Probability of crossing overa | 0.01 | 0.002 | 0.02 0.03
pair of chromosomes

MutationProb Probability of mutating a | 0.60 0.60 0.60 0.30
chromosome

MaxGenerations | Maximum number of genera- | 500 2000 500 5000 | generations
tions

GensNoChange | Maximum number of genera- | 50 150 50 500 | generations
tion with no change in elite
chromosome
Ops per generation 1750 | 77400 | 2300 | 17200 | operations
Random numbers per genera- | 898 | 38798 | 1198 | 8798 | numbers
tion
Ops for random number gen. | 9878 | 426778 | 13178 | 96778 | operations
Total Ops 11628 | 504178 | 15478 | 113978 | operations

kernel, we define the workload in operations (rather than floating-point operations) per generation.
The workload is related to the number of genes and the population size per generation.

Parts of the genetic algorithm code are embarrassingly parallel, including the crossover and
mutation sections. Most of the evaluation section is also embarrassingly parallel, except for the
elite chromosome determination portion. However, the selection and reproduction section can-
not be conducted in a parallel manner since a view of the entire population is necessary. More
discussion on parallelizing and distributing genetic algorithms can be found in [5].

25

6. Further Kernel Benchmarks

These are benchmarks that might be considered for a second set of kernel benchmarks, but are not
included with this first set.

Image encoding. Compress a synthetic aperture radar (SAR) image for storage or transmission.
The dynamic range of SAR imagery is such that it is not well represented using conventional
image processing standards such as that defined by the joint photographic experts group (JPEG)
for image compression. The JPEG 2000 standard addresses the problems that JPEG presents for
SAR images. For more details on JPEG 2000, see Taubman and Marcellin [12]. Baxter and Seibert
have performed an analysis of the desirable features of an encoding algorithm for SAR images [1].
The major features of the encoding algorithm as they describe it are:

e wavelet packet transforms with a Gabor-like tree structure and smooth biorthogonal wavelet
filters,

e trellis-coded quantization, and

e a bit-allocation procedure based on minimizing distortion (perceptual distortion, based on
the human visual system) and rate.

Some of these features (particularly trellis-coded quantization) are in “part 2” of the JPEG 2000
standard, and are therefore not yet present in most publicly available implementations of the stan-
dard.

Secure network protocol. Transmit a message of a given size with authentication and encryption,
based on IPSec or a similar protocol.

Synchronization. Mark a value on a different processor or in a remote memory for exclusive
access (lock/unlock operations).

Image processing: morphological operations. Take an image and perform an “opening” or
“closing” operation on it. These are integer convolution operations.

Image processing: edge detection. Perform edge detection in both the z and y dimensions of a
two-dimensional image.

Giga-updates per second. Read, then write a sequence of random memory locations in a large
memory space. A description of the benchmark is at
<http://iram.cs.berkeley.edu/~brg/dis/gups/>.

Incomplete Gamma function. Calculate values of the incomplete gamma function.

27

APPENDIX A
Code Conventions

Where MATLAB code for a kernel benchmark is provided, at least three MATLAB executable
files are included. The first is the actual benchmark executable itself: this is typically a MATLAB
function. A second file, a script file, is provided to test the function. This file typically tests for the
presence of a data file. If the data file is not present, a further MATLAB function (contained in the
third file) is called to generate the data; otherwise, the data is read from the file.

For a particular kernel, where the actual benchmark function is named kernel . m, the test
script is named kernelTest .m and the data generator is named kernelGen.m. For exam-
ple, for the FIR filter bank kernel, the function is named FIRBank.m, the test script is named
FIRBankTest .m, and the data generator is named FIRBankGen .m.

The base names for each of the kernels are listed in Table 10. Note that no code or data is
provided for the database kernel. Example C code, but no data, is provided for the corner-turn
kernel.

Table 10.

Kernel benchmark code names.
Kernel name Base file name
FIR filter bank FIRBank
Singular value decomposition | SVD
CFAR detection Cfar
Pattern match PatternMatch
Genetic algorithm GenAlg

29

10.

11.

12.

REFERENCES

Robert Baxter and Michael Seibert. Synthetic aperature radar image coding. MIT Lincoln
Laboratory Journal, 11(2):121-158, 1998.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001.

J. J. M. Cuppen. The singular value decomposition in product form. SIAM J. Sci. Stat.
Comput., 4(2):216-222, June 1983.

Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

José L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm program-
ming environments. IEEE Computer, 27(6):28-43, June 1994,

David E. Goldberg, editor. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Van Nostrand Reinhold, New York, 1991.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 3rd edition, 1996.

David J. Kuck. High Performance Computing: Challenges for Future Systems. Oxford
University Press, New York, NY, 1996.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-time signal processing. Prentice-Hall,
Inc., 1989.

David A. Schwartz, Randall R. Judd, William J. Harrod, and Dwight P. Manley. Vector, sig-
nal, and image processing library (VSIPL) 1.0 application programmer’s interface. Technical
report, Georgia Tech Research Corporation, March 2000. http://www.vsipl.org.

M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. IEEE Computer, 27(6):17-
26, June 1994.

David S. Taubman and Michael W. Marcellin. JPEG 2000: Image Compression Fundamen-
tals, Standards, and Practice. Kluwer Academic Publishers, 2002.

31

APPENDIX B
Revisions

The original version of this document was issued July 31, 2002. This is the first revision of the
document. It introduces the following changes:

an error in the CFAR workload table (Table 4) was corrected;
a description of the reduced SVD algorithm, including workload estimates, was added;

the description of the database kernel benchmark was heavily revised and the workload was
changed;

a description of the random number generator used for the genetic algorithm was added and
its workload was updated in a corresponding way;

the pattern match benchmark description and workload were updated to reflect a more effi-
cient implementation and to introduce a second data set; and

the discussion of metrics (in particular, of efficiency and program stability) was updated to
reflect that efficiency is not always easily calculable for the different kernels.

33

